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Using Entanglement to Increase the Angular
Resolution of Very Long Baseline
Interferometry

Matthew Thill,∗ Sam Dolinar,∗ and Dariush Divsalar∗

ABSTRACT. — A key motivation in developing quantum technology has been its

identified potential for enhancing sensing capability. We present a methodology for

using quantum entanglement to improve several features of Very Long Baseline

Interferometry. In particular, we show that sharing a simple bipartite state between

two antennas equipped with photon-number-resolving detectors can enable us to beat

the shot noise limit in measuring the location of a weak point source, achieving

Heisenberg-limited sensing.

I. Introduction: Very Long Baseline Interferometry Setup

Very Long Baseline Interferometry (VLBI) is a technique that uses distantly spaced

antennas to measure the brightness distribution of a radio or light source. The concept

[1] is based on the source wavefront arriving at one of the antennas with a

geometrically induced time delay of τg (see Figure 1) so that the two antennas receive

signals V1(t) = v1 cos 2πν(t− τg) and V2(t) = v2 cos 2πνt for a monochromatic point

source signal at frequency ν. The signals V1(t) and V2(t) are passed through a

correlator, which multiplies and time-averages the signals. In the case of a

monochromatic point source, the output correlation is r(τg) = v1v2 cos 2πντg, a

function of the delay τg.

The geometric delay can be expressed in terms of the baseline vector b between the

antennas and the unit direction vector s to the point source: τg = b · s/c, where c is
the speed of light. Thus, measuring an interference fringe pattern associated with

varying τg allows us to estimate a source position s. A general monochromatic source
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Figure 1. The geometry of a VLBI setup, in which two antennas spaced far apart receive photons from

a distant source.

with frequency ν will be defined by a brightness distribution I(s), and our correlator

output must be computed by integrating over all position vectors s or, equivalently,

integrating over all solid angle elements dΩ across the sky. This amounts to measuring

the real part of the source visibility,

V (b) :=

∫
S

A(s)I(s)e−2πiνb·s/cdΩ (1)

where A(s) is the antenna response in direction s. The source brightness distribution

I(s) can be recovered as the inverse Fourier transform of V (b). In practice, this

necessitates measuring the visibility at a range of different baselines and taking a

discrete Fourier transform approximation.

Denoting by Φ the angle between the position vector s and the baseline vector b, and

rewriting τg = b cosΦ/c where b is the baseline length, we see that the variational

relationship between Φ and τg is given by

dΦ = −c · dτg/b sinΦ. (2)

Thus, the angular resolution of a VLBI system is inversely proportional to the baseline

length b [2]. Developing antenna arrays with large baselines is generally a costly

endeavor, so alternative methods for improving the angular resolution are of great

interest.
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II. Sharing Entangled Single-Photon States

Several years ago, Gottesman et al. [3] designed a way to perform long baseline

interferometry for very weak sources, where the incoming wavefront could be modeled

as a single-photon quantum state being measured by two telescopes. In a two-telescope

system, at a given time, a single photon is equally likely to be detected at either the

left (L) or the right (R) telescope, and we model its quantum state in the form

|ψ⟩src = 1√
2
(|0⟩L|1⟩R + eiϕ|1⟩L|0⟩R), (3)

where |0⟩ and |1⟩ denote 0- and 1-photon states, respectively, and

ϕ := 2πντg = 2πνb · s/c = 2πb sin θ/λ (4)

is the phase offset that the photon accrues when arriving at the left telescope. Here, θ

is the direction of arrival of the photon, and λ is its wavelength. The correlation step of

the interferometry now involves bringing the light from the two telescopes together at

a beamsplitter, which Gottesman et al. [3] argued was difficult for single-photon states

over long baselines due to inevitable photon losses and undesired phase shifts arising

from imperfections in the optical components, leading to reduced interference fringes.

Gottesman et al. [3] posed the following solution to this problem: Distribute the two

modes of a prepared maximally entangled photon state (EPS) to the two telescopes

(see Figure 2). This state can then be used to either teleport the received left and

right signal states back to the beamsplitter or to perform a special measurement

directly at the telescopes. The latter approach is simple to implement: Our distributed

EPS takes the form

|ψ⟩eps = 1√
2

(
|0⟩L|1⟩R + eiδ|1⟩L|0⟩R

)
, (5)

where we use an adjustable delay line to apply a varying phase δ to the photon if it

arrives at the left antenna. We combine each telescope’s share of the EPS with its

received signal state in a 50:50 beamsplitter, and post-select cases in which one photon

arrives at each telescope (so that one antenna receives the |ψ⟩src photon and the other

receives the |ψ⟩eps photon). The two telescopes’ beamsplitters will see a photon in the

same output port with probability [1 + Re(V (b)e−iδ)]/2 and opposite output ports

with probability [1− Re(V (b)e−iδ)]/2, so by varying the delay phase δ, we can

measure both the phase and amplitude of the visibility V (b).

III. Increasing the Baseline Using Entangled Multiple-Photon States

We begin by considering a point source so that all astronomical photons have a fixed

position vector s and the phase offset ϕ is constant. Consider the following

generalization of the protocol in Gottesman et al. [3]: Instead of distributing single
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Figure 2. The VLBI receiver discussed in Gottesman et al. [3]. A weak source emits a single photon

which can arrive at either the left (L) or the right (R) antenna. Simultaneously, an EPS is shared

between the two antennas. The source and EPS modes are joined in a 50:50 beamsplitter at each

receiver, with a photon-counting detector at each output. If each receiver receives a single photon

click, then the source and EPS photons are indistinguishable, and the configuration of detection events

allows for the visibility to be measured by varying an adjustable delay line.

entangled photon pairs, we distribute entangled N -photon states in the form

|ΨN ⟩eps = 1√
2
(|00...0⟩L|11...1⟩R + eiNδ|11...1⟩L|00...0⟩R) (6)

=
1√
2
(|N⟩epsR + eiNδ|N⟩epsL ), (7)

where we have used the “|N⟩” notation as a shorthand. These are essentially NOON

states, and for ease of notation, we will treat them as such. More generally, we may

consider the N photons as belonging to distinguishable modes (e.g., temporal), and

our following calculations can be adapted accordingly without too much difficulty.

Note that in principal, because only one logical entangled qubit (ebit) is encoded in

|ΨN ⟩eps, it should be possible for the telescope stations to produce this state using

local resources and a single shared ebit, perhaps in the form of a single entangled

photon pair.

Now, if the two telescopes post-select cases in which each receives N photons (either

N photons in a single mode per antenna, or a single photon in each of N different

modes per antenna), then the joint state of the EPS and source photons is projected
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onto a superposition of the states in which one telescope received the N EPS photons

and the other received N source photons:

|ΘN ⟩LR =
1√
2
(eiNϕ|N⟩srcL |N⟩epsR + eiNδ|N⟩epsL |N⟩srcR ). (8)

For simplicity’s sake, we will first assume that all N EPS photons belong to the same

mode, as do the N source photons, as depicted in Figure 3. If we let âL and b̂L denote

the annihilation operators of the source and EPS modes, respectively, at the left

telescope, and âR and b̂R denote the corresponding annihilation operators for the right

telescope, then we can reexpress this state as

|ΘN ⟩LR =
1

N !
√
2
(eiNϕ(â†L)

N (b̂†R)
N + eiNδ(b̂†L)

N (â†R)
N )|0⟩, (9)

where |0⟩ denotes the vacuum state. At each telescope, we input each of the N

received source modes and the corresponding EPS mode into the two input arms of a

50:50 beamsplitter. We will denote by ĉL and d̂L the two beamsplitter output mode

annihilation operators at the left telescope and similarly ĉR and d̂R for the right

telescope. At the left telescope, we then have the input-output relationships

â†L 7→ 1√
2
(ĉ†L + d̂†L), (10)

b̂†L 7→ 1√
2
(ĉ†L − d̂†L), (11)

and similar relations apply for the right telescope’s beamsplitter. Note that we have

implicitly normalized the output annihilation operators so that the input-output

relationships have real coefficients.
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Figure 3. An N-photon extension of the telescope from Gottesman et al. [3]. The EPS is prepared as a

superposition of all N photons being sent to either the left or right antenna. We assume

photon-number resolution (PNR) at each detector and post-select cases where the left and right

detectors each receive N photons. This forces the source photon state into a superposition of N

photons arriving at either the left or right antenna. The associated phases of the photons superimpose.
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The joint state output from the arms of the left and right beamsplitters will have the

form

|ΩN ⟩LR =
1

N ! · 2N ·
√
2

(
eiNϕ(ĉ†L + d̂†L)

N (ĉ†R − d̂†R)
N

+eiNδ(ĉ†L − d̂†L)
N (ĉ†R + d̂†R)

N
)
|0⟩ (12)

=
1

N ! · 2N ·
√
2

(
eiNϕ

(
N∑

ℓ1=0

(
N

ℓ1

)
(ĉ†L)

N−ℓ1(d̂†L)
ℓ1

·
N∑

r1=0

(
N

r1

)
(−1)r1(ĉ†R)

N−r1(d̂†R)
r1

)

+eiNδ

(
N∑

ℓ2=0

(
N

ℓ2

)
(−1)ℓ2(ĉ†L)

N−ℓ2(d̂†L)
ℓ2

·
N∑

r2=0

(
N

r2

)
(ĉ†R)

N−r2(d̂†R)
r2

))
|0⟩ (13)

=
1

N ! · 2N ·
√
2

N∑
ℓ,r=0

[(
(−1)reiNϕ + (−1)ℓeiNδ

)
·
(
N

ℓ

)(
N

r

)
(ĉ†L)

N−ℓ(d̂†L)
ℓ(ĉ†R)

N−r(d̂†R)
r|0⟩

]
(14)

=
1

2N ·
√
2

N∑
ℓ,r=0

[(
(−1)reiNϕ + (−1)ℓeiNδ

)
·

√(
N

ℓ

)√(
N

r

)
|N − ℓ⟩L,c|ℓ⟩L,d|N − r⟩R,c|r⟩R,d

]
. (15)

Remark 1: As mentioned before, we can adapt these calculations to account for each

of the N photons at an antenna belonging to a different mode, such as a distinct time

bin. In this case, in each of N consecutive time bins, we post-select cases in which we

receive a single photon at each antenna. In Equation (9), the term (â†L)
N will be

replaced by
∏N

i=1 â
†
L,i, where âL,i is the corresponding annihilation operator in the ith

mode. Also in this equation, the divisor N ! will be omitted. In the expression for the

final output state in Equation (15), terms
√(

N
ℓ

)√(
N
r

)
|N − ℓ⟩L,c|ℓ⟩L,d|N − r⟩R,c|r⟩R,d

will be replaced by a sum of
(
N
ℓ

)
·
(
N
r

)
different terms corresponding to indexed modes

for the ℓ and r photons in the d-outputs of the left and right antennas, respectively. It

is important to note that the probabilities of ℓ and r having the same parity or

opposite parities will remain the same as in Equation (15).

Note that each term of the final sum has a coefficient proportional to either

eiNϕ + eiNδ or eiNϕ − eiNδ, depending on whether the photon counts ℓ and r in the

lower arms of the left and right beamsplitters have the same parity or opposite

parities, respectively. Each of these terms corresponds to a unique signature of photon

count numbers at the c and d output ports of each beamsplitter, and the probability
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of the associated photon count configuration will gain a factor of [1 + Re(eiN(ϕ−δ))]/2

or [1−Re(eiN(ϕ−δ))]/2, respectively, proportional to the coefficient’s squared modulus.

Thus, by tracking the c and d output photon count numbers at each antenna, we can

estimate these probability factors. If we assume that the source photons arrive from a

direction given by the unit vector s, then from Equation (4) we have

[1± Re(eiN(ϕ−δ))]/2 = [1± Re(e2πiνNb·se−iNδ))]/2,

where e2πiνNb·s is the contribution to the visibility V (Nb) arising from the s

direction. Because we are considering a point source with fixed position s, this

demonstrates that we can use these probability factors to compute V (Nb) for a point

source by varying the delay δ. This effectively increases our baseline distance N -fold

and reduces our error in estimating the source angle θ (or the angle Φ between b and

s) by a factor of N by Equation (2).

IV. Estimating Point Source Location

Sharing N -photon entangled states between our two antennas is akin to using N

entangled probes to perform Heisenberg-limited sensing [4, 5]. In Heisenberg-limited

sensing, the factor of N increase in the parameter ϕ ultimately reduces the error

(standard deviation) of our estimate from scaling as 1/
√
N (the classical “shot noise”

limit, achievable using N independent probes without exploiting entanglement) to

scaling as 1/N (the Heisenberg limit). A number of studies have already examined

using quantum states to achieve Heisenberg-limited sensing in interferometry [6–10].

We can compute the Fisher information F of our detection scheme’s ability to

estimate the position of a point source, which was derived by Tsang [11] for the N = 1

case originally described in Gottesman et al. [3]. The Cramér-Rao bound states that

the variance of our estimate of ϕ is lower-bounded by 1/F , and this can be

asymptotically achieved over long integration times by the maximum likelihood

estimation. Let ϵ be the average detected source photon number. Then the probability

of the N source photons and the N EPS photons arriving at opposite antennas is

(ϵ/2)N e−ϵ

N ! . Taking our measurement to be a comparison of the ℓ and r parities from

Equation (15), we will denote by E0 the event that N photons arrived at each

antenna, and the ℓ and r counts have the same parity. Likewise, we let E1 denote the

event that N photons arrived at each antenna, with ℓ and r having opposite parities.

We can compute P (E0|ϕ) and P (E1|ϕ) by summing the squared magnitudes of the

corresponding coefficients in Equation (15). For instance,

P (E0|ϕ) =
(ϵ/2)N e−ϵ

N !

22N+1

∣∣eiNϕ + eiNδ
∣∣2  ∑

ℓ,r even

(
N

ℓ

)(
N

r

)
+
∑

ℓ,r odd

(
N

ℓ

)(
N

r

) , (16)

P (E1|ϕ) =
(ϵ/2)N e−ϵ

N !

22N+1

∣∣eiNϕ − eiNδ
∣∣2
 ∑

ℓ odd,
r even

(
N

ℓ

)(
N

r

)
+
∑

ℓ even,
r odd

(
N

ℓ

)(
N

r

) . (17)
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We can substitute
∣∣eiNϕ + eiNδ

∣∣2 = 2 ·
(
1 + Re(eiN(ϕ−δ))

)
. Furthermore,∑

ℓ,r even

(
N
ℓ

)(
N
r

)
is the product of

∑
ℓ even

(
N
ℓ

)
and

∑
r even

(
N
r

)
, which are equal.

Because
∑

ℓ even

(
N
ℓ

)
and

∑
ℓ odd

(
N
ℓ

)
are the sums of the coefficients of the even and

odd exponent terms of (x+ 1)N , respectively, we see that substituting 1 for x gives us

2N =
∑

ℓ even

(
N
ℓ

)
+
∑

ℓ odd

(
N
ℓ

)
, and substituting −1 for x gives∑

ℓ even

(
N
ℓ

)
−
∑

ℓ odd

(
N
ℓ

)
= 0, whereby

∑
ℓ even

(
N
ℓ

)
and

∑
ℓ odd

(
N
ℓ

)
are both equal to

2N/2 and
∑

ℓ,r even

(
N
ℓ

)(
N
r

)
= 22N/4. Similar computations hold for the other terms in

our expressions, and it follows that

P (E0|ϕ) =
ϵNe−ϵ

2N+1N !

(
1 + Re(eiN(ϕ−δ))

)
, (18)

P (E1|ϕ) =
ϵNe−ϵ

2N+1N !

(
1− Re(eiN(ϕ−δ))

)
. (19)

The Fisher information is then given by

F :=
∑
i

1

P (Ei|ϕ)
D(Ei|ϕ), (20)

D(Ei|ϕ) :=
(
∂P (Ei|ϕ)

∂ϕ

)2

. (21)

We can then compute

D(E0|ϕ) =
[
∂

∂ϕ

[
ϵNe−ϵ

2N+1N !
(1 + cos(N(ϕ− δ)))

]]2
(22)

=
N2ϵ2Ne−2ϵ

22N+2(N !)2
sin2(N(ϕ− δ)), (23)

and can verify that D(E1|ϕ) = D(E0|ϕ). Subsequently,

F =
N2ϵ2Ne−2ϵ

22N+2(N !)2
sin2(N(ϕ− δ)) ·

[
1

P (E0|ϕ)
+

1

P (E1|ϕ)

]
(24)

=
N2ϵNe−ϵ

2N+1N !
sin2(N(ϕ− δ)) ·

[
1

1 + cos(N(ϕ− δ))
+

1

1− cos(N(ϕ− δ))

]
(25)

=
N2ϵNe−ϵ

2N+1N !
sin2(N(ϕ− δ)) ·

[
2

1− cos2(N(ϕ− δ))

]
(26)

=
N2ϵNe−ϵ

2NN !
. (27)

Using Stirling’s approximation, N ! ∼
√
2πN (N/e)

N
, we arrive at

F ∼ N3/2e−ϵ

√
2π

( ϵe
2N

)N
. (28)

If ϵ represents the average photon number in a single time bin, and the N photon

EPSs |ΘN ⟩LR are produced by sending all N photons to the left or right antenna in

the same time bin, then this expression for F represents a factor by which the Fisher

information scales over time. For ϵ > 1, this can give a substantial improvement over
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the N = 1 case. If instead ϵ represents the average photon number over N time bins,

and |ΘN ⟩LR represents a state in which each photon belongs to a separate time bin,

then we may write ϵ = Nϵ0, where ϵ0 is the single-time-bin average detected source

photon number. In this case, we achieve

FN =

(
NN+2

N !

)( ϵ0
2eϵ0

)N
(29)

∼ N3/2

√
2π

( ϵ0e
2eϵ0

)N
. (30)

We can compare this to simply using single-photon EPSs, and repeating N times, for

a total Fisher information of NF1 = N · ϵ0
2eϵ0 . It can be shown that this is greater than

Equation (29) for every value of N , regardless of ϵ0. We conclude that, while we can

reduce the variance of our estimate of ϕ by preparing our EPS photons for |ΘN ⟩LR all

in the same time bin for a large enough average photon number, we gain no such

benefit from distributing the photons over separate time bins. Furthermore, neither

case allows us to outperform a linear scaling of Fisher information with respect to

integration time, indicating that we cannot outperform the shot noise sensing limit.

This is largely due to the fact that the probability of N source photons all arriving at

a single antenna becomes diminishingly small, scaling as O(2−N ). We must build upon

our method to combat this.

V. Salvaging More Events with More Robust Entangled States

We can improve our performance by considering more elaborate forms of shared

entanglement between the two antennas. For instance, for N even, consider using

states of the form

|ΨN,d⟩eps =
1√
2

∑
x∈{0,1}N ,

||x||1=N
2 −d

(ei(
N
2 +d)δ|x⟩L|x⟩R + ei(

N
2 −d)δ|x⟩L|x⟩R). (31)

Here, for a binary vector x ∈ {0, 1}N , the notation x represents interchanging 0 and 1

for each element of x. In other words, over N time bins, exactly N
2 − d photons are

sent to one antenna, while N
2 + d are sent to the other. We can verify that if we detect

a single photon at each antenna over all the time intervals (one from the source, and

one from the entangled state), our final state will be projected into the form

|ΘN,d⟩LR =
1√
2
ei(

N
2 −d)(ϕ+δ)

∑
S0

(
ei2dϕ|x⟩epsL |y⟩srcL |x⟩epsR |y⟩srcR

+ei2dδ|x⟩epsL |y⟩srcL |x⟩epsR |y⟩srcR

)
(32)

=
1√
2
ei(

N
2 −d)(ϕ+δ)

(
ei2dϕ

[∑
S0

|x⟩epsL |y⟩srcL |x⟩epsR |y⟩srcR

]

+ei2dδ

[∑
S0

|x⟩epsL |y⟩srcL |x⟩epsR |y⟩srcR

])
, (33)
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where

S0 := {x,y ∈ {0, 1}N : ||x||1 =
N

2
− d, ||y||1 =

N

2
+ d, x+ y = 1}

and 1 denotes the all-1 length-N binary vector. Paralleling our math from Equations

(12)–(15), every photon count signature in the “c” and “d” outputs of the left and

right antenna will correspond to one of the terms in the above sum, and the coefficient

will be scaled by a factor of either ei2dϕ + ei2dδ or ei2dϕ − ei2dδ. Following the same

reasoning as before, by measuring photon counts, we can estimate the probabilities

[1± Re(ei2d(ϕ−δ))]/2 = [1± Re(e2πiν(2d)b·se−iNδ))]/2, as if we increased our baseline

by a factor of 2d.

The difference here is that, while we gain less of an effective baseline increase than

before, we no longer require so many source photons to arrive at a single antenna. If a

source photon fails to arrive, or arrives at the same antenna as one of our EPS

photons, the position of the corresponding EPS photon is determined. If nL of these

events determine EPS photons arriving at the left antenna, and nR events determine

EPS photons arriving at the right, then the state of the remaining N − nL − nR time

bins is projected onto a superposition of two states, which are each described as

follows: In the first superposition state (of “Type 1”), N
2 − d− nL EPS photons arrive

at the left antenna (along with N
2 + d− nR source photons), while N

2 + d− nR EPS

photons arrive at the right antenna (along with N
2 − d− nL source photons). In the

second superposition state (“Type 2”), N
2 + d− nL EPS photons arrive at the left

antenna (as do N
2 − d− nR source photons), and N

2 − d− nR EPS photons arrive at

the right antenna (with N
2 + d− nL source photons). We devote the next section to

proving the following theorem:

Theorem 1. By setting d = fN for a fixed constant f < ϵ0/4 and using the state

|ΨN,d⟩eps in our configuration, our detection scheme’s ability to estimate the point

source angle ϕ achieves a Cramér-Rao lower bound on standard deviation scaling as

∼ 1/N3/4, thereby beating the shot noise scaling limit. Furthermore, if we allow f to

vary as f =

√
−πkN+

√
π2k2N2+64πϵ30kN

512ϵ0
for a constant k, we achieve Heisenberg-limited

scaling of ∼ 1/N .

VI. Proof of Theorem 1

We will prove Theorem 1 in three steps. First, we will derive an expression for the

output detection state arising from our setup and a corresponding expression for the

Fisher information. Then we will approximate the terms arising in this expression over

a typical set of (nL, nR). Finally, we will find a bound on the probability of these

typical (nL, nR) combinations to obtain the scalings of the total Fisher information

described in the theorem.
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A. The Output Detection State

Note that every set of nL + nR time bins is equally likely to occur. For each fixed set

of nL and nR time bins, there are
(N−nL−nR

N
2 −d−nL

)
events of Type 1 and

(N−nL−nR
N
2 +d−nL

)
events

of Type 2, each of which is equally probable. Each Type 1 state gains a phase factor of

ei[(
N
2 −d−nL)δ+(N

2 +d−nR)ϕ] = ei[(
N
2 −d)(δ+ϕ)−nLδ−nRϕ] · ei2dϕ.

Each Type 2 state correspondingly gains a phase factor of

ei[(
N
2 +d−nL)δ+(N

2 −d−nR)ϕ] = ei[(
N
2 −d)(δ+ϕ)−nLδ−nRϕ] · ei2dδ.

The result is a state in the form

|ΘN,d,nL,nR
⟩LR =

ei[(
N
2 −d)(δ+ϕ)−nLδ−nRϕ]√(N−nL−nR

N
2 −d−nL

)
+
(N−nL−nR

N
2 +d−nL

)
×

 ∑
|T (x,y)

1 ⟩∈T (nL,nR)

1

ei2dϕ|T (x,y)
1 ⟩+

∑
|T (x,y)

2 ⟩∈T (nL,nR)

2

ei2dδ|T (x,y)
2 ⟩

 ,

(34)

where T (nL,nR)
1 and T (nL,nR)

2 are the Type 1 and Type 2 states, respectively:

T (nL,nR)
1 :=

{
|x⟩epsL |y⟩srcL |x⟩epsR |y⟩srcR x,y ∈ {0, 1}N−nL−nR ,

||x||1 =
N

2
− d− nL, x+ y = 1

}
, (35)

T (nL,nR)
2 :=

{
|x⟩epsL |y⟩srcL |x⟩epsR |y⟩srcR x,y ∈ {0, 1}N−nL−nR ,

||x||1 =
N

2
+ d− nL, x+ y = 1

}
, (36)

and |T (x,y)
1 ⟩ and |T (x,y)

2 ⟩ represent the corresponding elements of T (nL,nR)
1 and

T (nL,nR)
2 . Notice that the vector y implicitly satisfies ||y||1 = N

2 + d− nR in T (nL,nR)
1

and ||y||1 = N
2 − d− nR in T (nL,nR)

2 .

We can reexpress Equation (34) as

|ΘN,d,nL,nR
⟩LR = ei[(

N
2 −d)(δ+ϕ)−nLδ−nRϕ]

·
(
ei2dϕ

√
A

(nL,nR)
1 |T(nL,nR)

1 ⟩+ ei2dδ
√
A

(nL,nR)
2 |T(nL,nR)

2 ⟩
)
, (37)

where

|T(nL,nR)
1 ⟩ := 1√(N−nL−nR

N
2 −d−nL

) ∑
|T (x,y)

1 ⟩∈T (nL,nR)

1

|T (x,y)
1 ⟩,

|T(nL,nR)
2 ⟩ := 1√(N−nL−nR

N
2 +d−nL

) ∑
|T (x,y)

2 ⟩∈T (nL,nR)

2

|T (x,y)
2 ⟩,

11



A
(nL,nR)
1 :=

(N−nL−nR
N
2 −d−nL

)(N−nL−nR
N
2 −d−nL

)
+
(N−nL−nR

N
2 +d−nL

) =

∏d
k=−d

(
N
2 + k − nL

)∏d
k=−d

(
N
2 + k − nL

)
+
∏d

k=−d

(
N
2 + k − nR

) ,
(38)

A
(nL,nR)
2 :=

(N−nL−nR
N
2 +d−nL

)(N−nL−nR
N
2 +d−nL

)
+
(N−nL−nR

N
2 −d−nL

) =

∏d
k=−d

(
N
2 + k − nR

)∏d
k=−d

(
N
2 + k − nL

)
+
∏d

k=−d

(
N
2 + k − nR

) ,
(39)

where we note that A
(nL,nR)
1 +A

(nL,nR)
2 = 1. We can map each combination of states

|T (x,y)
1 ⟩ ∈ T (nL,nR)

1 and |T (x,y)
2 ⟩ ∈ T (nL,nR)

2 to a state of the photon count signatures

in the “c” and “d” output ports of the left and right antennas using a process similar

to that of Equations (12)–(15). For any (nL, nR) pair, we can index the output events

by the vectors

Z(nL,nR) := {(zL, zR) ∈ {0, 1}N−nL−nR × {0, 1}N−nL−nR}, (40)

where zL contains a 1 in the ith position if a detection event occurred at the “d”

output port of the left antenna at time index i out of the N − nL − nR timeslots, and

zR is defined similarly. A given state |T (x,y)
1 ⟩ will map to a linear combination of the

output states |(zL, zR)⟩, each with a coefficient gaining a factor of −1 for every index

where zL and x are both nonzero, and for every index where zR and x are both

nonzero. The same holds for each state |T (x,y)
2 ⟩. We can write this concisely as

|T (x,y)
1 ⟩ 7→ 1√

22(N−nL−nR)

∑
Z(nL,nR)

(−1)zL·x+zR·x|(zL, zR)⟩ (41)

=
1

2N−nL−nR

∑
Z(nL,nR)

(−1)zL·x+zR·(1−x)|(zL, zR)⟩ (42)

=
1

2N−nL−nR

∑
Z(nL,nR)

(−1)zR·1 · (−1)(zL−zR)·x|(zL, zR)⟩, (43)

where 1 is the vector of all ones. Similarly,

|T (x,y)
2 ⟩ 7→ 1

2N−nL−nR

∑
Z(nL,nR)

(−1)zR·1 · (−1)(zL−zR)·x|(zL, zR)⟩. (44)

It follows that the states |T(nL,nR)
1 ⟩ and |T(nL,nR)

2 ⟩ will map to linear combinations of

output states of the forms

12



|T(nL,nR)
1 ⟩ 7→ 2−(N−nL−nR)√(N−nL−nR

N
2 −d−nL

) ∑
Z(nL,nR)

(−1)zR·1

 ∑
||x||1=N

2 −d−nL

(−1)(zL−zR)·x

 |(zL, zR)⟩

(45)

= 2−(N−nL−nR)
∑

Z(nL,nR)

|Z(nL,nR)
1 (zL, zR)⟩ (46)

=: |Z(nL,nR)
1 ⟩, (47)

|T(nL,nR)
2 ⟩ 7→ 2−(N−nL−nR)√(N−nL−nR

N
2 +d−nL

) ∑
Z(nL,nR)

(−1)zR·1

 ∑
||x||1=N

2 +d−nL

(−1)(zL−zR)·x

 |(zL, zR)⟩

(48)

= 2−(N−nL−nR)
∑

Z(nL,nR)

|Z(nL,nR)
2 (zL, zR)⟩ (49)

=: |Z(nL,nR)
2 ⟩, (50)

where we define

|Z(nL,nR)
1 (zL, zR)⟩ := Z

(nL,nR)
1 (zL, zR) · |(zL, zR)⟩, (51)

|Z(nL,nR)
2 (zL, zR)⟩ := Z

(nL,nR)
2 (zL, zR) · |(zL, zR)⟩, (52)

with complex coefficients Z
(nL,nR)
1 (zL, zR) and Z

(nL,nR)
2 (zL, zR) defined by

Z
(nL,nR)
1 (zL, zR) :=

1√(N−nL−nR
N
2 −d−nL

) (−1)zR·1

 ∑
||x||1=N

2 −d−nL

(−1)(zL−zR)·x

 , (53)

Z
(nL,nR)
2 (zL, zR) :=

1√(N−nL−nR
N
2 +d−nL

) (−1)zR·1

 ∑
||x||1=N

2 +d−nL

(−1)(zL−zR)·x

 . (54)

We can compute Z
(nL,nR)
1 (zL, zR) and Z

(nL,nR)
2 (zL, zR) using the following lemma:

Lemma 1. The sum
∑

x∈Sk
(−1)w·x, where Sk = {x ∈ {0, 1}m : ||x||1 = k} and

w ∈ {0, 1}m has weight ||w||1 = ℓ, is equal to the coefficient of xk in the polynomial

expansion of (1− x)ℓ(1 + x)m−ℓ.

Proof. We can write (−1)w·x = (−1)|supp(w)∩supp(x)|. We can then separate the vectors

x by the size of the overlap of their support with that of w: For each value of

s ≤ min(k, ℓ), there are
(
ℓ
s

)
ways to choose an overlap of size s and

(
m−ℓ
k−s

)
ways of

choosing the rest of the support of x. Thus,

∑
x∈Sk

(−1)w·x =

min(k,ℓ)∑
s=0

(−1)s
(
ℓ

s

)(
m− ℓ

k − s

)
. (55)
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Now, examining the coefficients of (1− x)ℓ(1 + x)m−ℓ,

(1− x)ℓ(1 + x)m−ℓ =

(
ℓ∑

i1=0

(−1)i1
(
ℓ

i1

)
xi1

)(
m−ℓ∑
i2=0

(
m− ℓ

i2

)
xi2

)
(56)

=

m∑
r=0

(
r∑

i3=0

(−1)i3
(
ℓ

i3

)(
m− ℓ

r − i3

))
xr. (57)

We see that the coefficient of xk is identical to our above calculation.

Note that from the definitions in Equations (35) and (36), we may write∑
||x||1=N

2 −d−nL

(−1)(zL−zR)·x = (−1)−(zL−zR)·1
∑

||x||1=N
2 −d−nL

(−1)(zL−zR)·(1+x) (58)

= (−1)(zL−zR)·1
∑

||y||1=N
2 +d−nR

(−1)(zL−zR)·y. (59)

This, along with the fact that
(N−nL−nR

N
2 −d−nR

)
=
(N−nL−nR

N
2 +d−nL

)
, gives us the relation

Z
(nL,nR)
1 (zL, zR) = (−1)(zL−zR)·1 · Z(nR,nL)

2 (zL, zR), (60)

which represents the fact that the coefficients of |Z(nL,nR)
1 (zL, zR)⟩ in |Z(nL,nR)

1 ⟩ and
|Z(nR,nL)

2 (zL, zR)⟩ in |Z(nR,nL)
2 ⟩ differ by a factor of (−1)(zL−zR)·1. With a similar

reasoning applied to Equations (38) and (39), we have

A
(nL,nR)
1 = A

(nR,nL)
2 . (61)

We can express the output detection state resulting from the received state

|ΘN,d,nL,nR
⟩LR from Equation (37) as

|ΘN,d,nL,nR
⟩LR 7→ |ΦN,d,nL,nR

⟩LR

= ei[(
N
2 −d)(δ+ϕ)−nLδ−nRϕ]

(
ei2dϕ

√
A

(nL,nR)
1 |Z(nL,nR)

1 ⟩

+ei2dδ
√
A

(nL,nR)
2 |Z(nL,nR)

2 ⟩
)

(62)

=
ei[(

N
2 −d)(δ+ϕ)−nLδ−nRϕ]

2(N−nL−nR)

∑
Z(nL,nR)

(
ei2dϕ

√
A

(nL,nR)
1 |Z(nL,nR)

1 (zL, zR)⟩

+ei2dδ
√
A

(nL,nR)
2 |Z(nL,nR)

2 (zL, zR)⟩
)

(63)

=
ei[(

N
2 −d)(δ+ϕ)−nLδ−nRϕ]

2(N−nL−nR)

∑
Z(nL,nR)

[(
ei2dϕ

√
A

(nL,nR)
1 · Z(nL,nR)

1 (zL, zR)

+ei2dδ
√
A

(nL,nR)
2 · Z(nL,nR)

2 (zL, zR)

)
|(zL, zR)⟩

]
.

(64)
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Every detection event corresponds to a specific instance of the combination

{nL, nR, (zL, zR)}. The probability of such an event depends on P (nL, nR), the

probability of observing nL and nR, and the squared norm of the coefficient of

|(zL, zR)⟩ in Equation (64):

P ({nL, nR, (zL, zR)}) =
P (nL, nR)

22(N−nL−nR)
·
∣∣∣∣(ei2dϕ√A(nL,nR)

1 · Z(nL,nR)
1 (zL, zR)

+ei2dδ
√
A

(nL,nR)
2 · Z(nL,nR)

2 (zL, zR)

)∣∣∣∣2 (65)

=
P (nL, nR)

22(N−nL−nR)
·
[
A

(nL,nR)
1 ·

(
Z

(nL,nR)
1 (zL, zR)

)2
+A

(nL,nR)
2 ·

(
Z

(nL,nR)
2 (zL, zR)

)2
+2

√
A

(nL,nR)
1 ·A(nL,nR)

2 · Z(nL,nR)
1 (zL, zR) · Z(nL,nR)

2 (zL, zR) cos(2d(ϕ− δ))

]
.

(66)

Ultimately, we are interested in the contribution of each of these terms to the Fisher

information. To this end, we compute(
∂P ({nL, nR, (zL, zR)})

∂ϕ

)2

=

(
P (nL, nR)

22(N−nL−nR)

)2

· 16d2 · sin2(2d(ϕ− δ))

×
(√

A
(nL,nR)
1 ·A(nL,nR)

2 · Z(nL,nR)
1 (zL, zR)

·Z(nL,nR)
2 (zL, zR)

)2

. (67)

Each of these terms will give a contribution to the Fisher information of

F ({nL, nR, (zL, zR)}) :=
1

P ({nL, nR, (zL, zR)})
·
(
∂P ({nL, nR, (zL, zR)})

∂ϕ

)2

. (68)

The total Fisher information will then be the sum

F =
∑

{nL,nR,(zL,zR)}

F ({nL, nR, (zL, zR)}). (69)

B. Approximating A
(nL,nR)
1 and A

(nL,nR)
2 for Typical (nL, nR)

Now, let us consider only events with

1

2

(
1− ϵ0

2

)
N − βN ≤ nL ≤ 1

2

(
1− ϵ0

2

)
N + βN, (70)

1

2

(
1− ϵ0

2

)
N − βN ≤ nR ≤ 1

2

(
1− ϵ0

2

)
N + βN, (71)

where ϵ0 is the average photon number detected within a time bin, assumed to be very

small, and β is a small fixed constant. Our reasoning is that in any time bin, a source

photon has a probability of approximately ϵ0/2 of arriving at the opposite antenna of

the corresponding EPS photon. Conversely, there is a probability (1− ϵ0
2 ) of the

photon not arriving, or arriving at the same antenna as the EPS photon, in either case
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Figure 4. Simulated values of A
(nL,nR)
1 , showing that most of the simulations yield a value of

A
(nL,nR)
1 close to 1

2
. Consequently, the same will be true of A

(nL,nR)
2 .

determining the position of the EPS photon. Therefore, the expected number of these

types of time bins is
(
1− ϵ0

2

)
N , half of which should correspond to nL and half to nR,

so the above ranges should capture the detection event signatures with high

probability. Furthermore, taking d = fN for a small constant f , then for nL and nR in

the above ranges, we can approximate the expressions in Equations (38) and (39) as

A
(nL,nR)
1 ≈

(
ϵ0N
4

)2fN(
ϵ0N
4

)2fN
+
(
ϵ0N
4

)2fN =
1

2
, (72)

A
(nL,nR)
2 ≈

(
ϵ0N
4

)2fN(
ϵ0N
4

)2fN
+
(
ϵ0N
4

)2fN =
1

2
. (73)

This allows us to simplify our Equations (66) and (67) as

P ({nL, nR, (zL, zR)}) ≈
P (nL, nR)

2 · 22(N−nL−nR)

×
[(
Z

(nL,nR)
1 (zL, zR)

)2
+
(
Z

(nL,nR)
2 (zL, zR)

)2
+2 · Z(nL,nR)

1 (zL, zR) · Z(nL,nR)
2 (zL, zR) cos(2d(ϕ− δ))

]
,

(74)

(
∂P ({nL, nR, (zL, zR)})

∂ϕ

)2

≈
(

P (nL, nR)

22(N−nL−nR)

)2

· 8d2 · sin2(2d(ϕ− δ))

×
(
Z

(nL,nR)
1 (zL, zR) · Z(nL,nR)

2 (zL, zR)
)2
. (75)

In Figure 4, we show the results of simulating 2,000 detection signatures and

computing the value of A
(nL,nR)
1 for ϵ0 = 0.05, N = 1000, and f = 0.001 (d = 1).
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Setting β = 0.006, we find that 82.5% of the simulated events lie in the ranges

determined by Equations (70) and (71). As we can see, most of the simulations yield a

value of A
(nL,nR)
1 close to 1

2 , justifying the approximation in Equation (72) (and

consequently Equation (73), because A
(nL,nR)
1 and A

(nL,nR)
2 sum to 1).

C. Approximating Z
(nL,nR)
1 (zL, zR) and Z

(nL,nR)
2 (zL, zR)

Now we further restrict our attention to the vectors (zL, zR) ∈ Z(nL,nR) satisfying

ϵ0N

4
− γN ≤ ||zL − zR||1 ≤ ϵ0N

4
+ γN (76)

for some small constant γ < ϵ0
4 .

We reason that this will comprise a majority of the vectors (zL, zR) because our above

conditions on nL and nR imply that

ϵ0N

2
− βN ≤ N − nL − nR ≤ ϵ0N

2
+ βN, (77)

giving us that N − nL − nR ≈ ϵ0N
2 , which will be the approximate dimension of both

zL and zR. If we choose these vectors uniformly at random, their entries will disagree

in approximately half of these coordinates, the number of which will be ||zL − zR||1. In
fact, because a given entry of zL will agree with the corresponding entry of zR with

probability 1
2 , then if we define

∆(nL,nR) := min

(∣∣∣∣12(N − nL − nR)−
ϵ0N

4
− γN

∣∣∣∣ , ∣∣∣∣12(N − nL − nR)−
ϵ0N

4
+ γN

∣∣∣∣)
(78)

Hoeffding’s inequality [12] gives us that

P

(
ϵ0N

4
− γN ≤ ||zL − zR||1 ≤ ϵ0N

4
+ γN nL, nR

)
≥ 1− 2 exp

(
−2(N − nL − nR)

(
∆(nL,nR)

N − nL − nR

)2
)

(79)

= 1− 2 exp

(
− 2(∆(nL,nR))2

N − nL − nR

)
. (80)

Furthermore, from Equation (77), we can see that(
∆(nL,nR)

)2
≥
(
β

2
− γ

)2

·N2 (81)

and

P

(
ϵ0N

4
− γN ≤ ||zL − zR||1 ≤ ϵ0N

4
+ γN nL, nR

)

≥ 1− 2 exp

−2

(
β
2 − γ

)2
ϵ0
2 + β

N

 (82)

= 1− 2 exp

(
− (β − 2γ)

2

ϵ0 + 2β
N

)
(83)
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which approaches 1 as N grows large as long as β ̸= 2γ. This allows us to bound the

total number of (zL, zR) satisfying Equation (76) as

#{(zL, zR) ∈ Z(nL,nR) | ϵ0N
2

− βN ≤ N − nL − nR ≤ ϵ0N

2
+ βN}

≥ 22(N−nL−nR) ·

(
1− 2 exp

(
− (β − 2γ)

2

ϵ0 + 2β
N

))
. (84)

For the values of nL, nR, and (zL, zR) considered, we can apply Lemma 1 to (53) and

(54) to approximate the values of Z
(nL,nR)
1 (zL, zR) and Z

(nL,nR)
2 (zL, zR). In

particular, we can write(ϵ0
4

− f − β
)
N ≤ N

2
− d− nL ≤

(ϵ0
4

− f + β
)
N, (85)(ϵ0

4
+ f − β

)
N ≤ N

2
+ d− nL ≤

(ϵ0
4

+ f + β
)
N. (86)

Now, considering Z
(nL,nR)
1 (zL, zR) in the language of Lemma 1, we have

w := zL − zR, (87)

m := dim(w) = N − nL − nR ≈ ϵ0N

2
, (88)

ℓ := ||w||1 ≈ ϵ0N

4
, (89)

k :=
N

2
− d− nL ≈

(ϵ0
4

− f
)
N, (90)

and we see that the sum
∑

||x||1=N
2 −d−nL

(−1)(zL−zR)·x is approximately equal to the

coefficient of x(
ϵ0
4 −f)N in the expansion of (1− x)

ϵ0N
4 · (1 + x)

ϵ0N
4 = (1− x2)

ϵ0N
4 ,

which itself is the coefficient of x(
ϵ0
8 − f

2 )N in the expansion of (1− x)
ϵ0N
4 . This gives us∣∣∣∣∣∣

∑
||x||1=N

2 −d−nL

(−1)(zL−zR)·x

∣∣∣∣∣∣ ≈
( ϵ0N

4
ϵ0N
8 − fN

2

)
, (91)

and from Stirling’s approximation, we have∣∣∣∣∣∣
∑

||x||1=N
2 −d−nL

(−1)(zL−zR)·x

∣∣∣∣∣∣ ≈
√

8ϵ0
π(ϵ20 − 16f2)N

×

[(
ϵ0

2ϵ0 − 2f

) ϵ0
8 − f

2

·
(

ϵ0
2ϵ0 + 2f

) ϵ0
8 + f

2

]N
. (92)

Note that for Equation (91) and our other approximations to hold, we must require

that

f <
ϵ0
4
. (93)
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We can use the same techniques to approximate

(
N − nL − nR
N
2 − d− nL

)−1/2

≈
( ϵ0N

2
ϵ0N
4 − fN

)−1/2

(94)

≈
(

4ϵ0
π(ϵ20 − 16f2)N

)−1/4

·

[(
ϵ0

2ϵ0 − 2f

) ϵ0
4 −f

·
(

ϵ0
2ϵ0 + 2f

) ϵ0
4 +f

]−N/2

(95)

= 21/4 ·
(

8ϵ0
π(ϵ20 − 16f2)N

)−1/4

·

[(
ϵ0

2ϵ0 − 2f

) ϵ0
8 − f

2
(

ϵ0
2ϵ0 + 2f

) ϵ0
8 + f

2

]−N

. (96)

Combining all of these, Equation (53) gives us

∣∣∣Z(nL,nR)
1 (zL, zR)

∣∣∣ ≈ ( 16ϵ0
π(ϵ20 − 16f2)N

)1/4

. (97)

We can follow a similar line of analysis for Z
(nL,nR)
2 (zL, zR), using

k := N
2 + d− nL ≈

(
ϵ0
4 + f

)
N in Lemma 1. Taking note of the symmetry between +f

and −f in our approximations, and referring to Equation (54), we again find that

∣∣∣Z(nL,nR)
2 (zL, zR)

∣∣∣ ≈ ( 16ϵ0
π(ϵ20 − 16f2)N

)1/4

. (98)

Whether Z
(nL,nR)
1 (zL, zR) and Z

(nL,nR)
2 (zL, zR) have the same sign or opposite signs

depends on the specific values of N , nL, nR, and d.

Remark 2: In practice, we often find that one of three scenarios tends to occur:

Z
(nL,nR)
1 (zL, zR) and Z

(nL,nR)
2 (zL, zR) either 1) almost always have the same sign,

2) almost always have opposite signs, or 3) have similar and opposite signs with

approximately the same frequency when sampling over (nL, nR) and (zL, zR). In

Figure 5, we demonstrate this via simulation in two cases: (N, d) = (300, 1) and

(400, 2), sampling 2,000 events for each with ϵ0 = 0.05. In the first configuration, the

values of Z
(nL,nR)
1 (zL, zR) and Z

(nL,nR)
2 (zL, zR) have positive or negative signs with

roughly the same frequency, but their ratio is predominantly ≈ −1. In the second

configuration, while the values of Z
(nL,nR)
1 (zL, zR) and Z

(nL,nR)
2 (zL, zR) are mostly

positive, there are enough negative values that their ratio is bimodally distributed

around both −1 and 1.
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Figure 5. Simulated values of Z
(nL,nR)
1 (zL, zR) (top row), Z

(nL,nR)
2 (zL, zR) (middle row), and their

ratio (bottom row) for two configurations: the left column uses parameters N = 300, d = 1, and

β = 0.01, while the right column uses N = 400, d = 2, and β = 0.008. The values tend to cluster

around the approximations given in Equations (97) and (98), indicated by the dotted orange lines.

We can now simplify our Equations (74) and (75) to

P ({nL, nR, (zL, zR)}) ≈
P (nL, nR)

22(N−nL−nR)
·

√
16ϵ0

π(ϵ20 − 16f2)N

· (1± cos(2fN(ϕ− δ))) , (99)
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(
∂P ({nL, nR, (zL, zR)})

∂ϕ

)2

≈
(

P (nL, nR)

22(N−nL−nR)

)2

· 8f2N2

·
(

16ϵ0
π(ϵ20 − 16f2)N

)
· sin2(2fN(ϕ− δ)). (100)

It follows from Equation (68) that

F ({nL, nR, (zL, zR)}) ≈
P (nL, nR)

22(N−nL−nR)
· 8f2N2 ·

√
16ϵ0

π(ϵ20 − 16f2)N

·
(

sin2(2fN(ϕ− δ))

1± cos(2fN(ϕ− δ))

)
(101)

=
P (nL, nR)

22(N−nL−nR)
· 8f2N3/2 ·

√
16ϵ0

π(ϵ20 − 16f2)
· (1∓ cos(2fN(ϕ− δ))). (102)

Summing up these Fisher information terms over Z(nL,nR) and using the bound from

Equation (84) gives us

∑
(zL,zR)∈Z(nL,nR)

F ({nL, nR, (zL, zR)}) ⪆ P (nL, nR) · 8f2 ·

√
16ϵ0

π(ϵ20 − 16f2)
·N3/2

×
(
1− 2 exp

(
− (β − 2γ)2

ϵ0 + 2β
N

))
× (1− |cos(2fN(ϕ− δ))|). (103)

It follows that the full Fisher information will be bounded by

F =
∑

nL,nR

∑
(zL,zR)∈Z(nL,nR)

F ({nL, nR, (zL, zR)})

⪆ 8f2 ·

√
16ϵ0

π(ϵ20 − 16f2)
·N3/2 · (1− |cos(2fN(ϕ− δ))|)

∑
nL,nR

P (nL, nR). (104)

D. Bounding the Probability of Typical (nL, nR)

It remains only to approximate
∑

nL,nR
P (nL, nR). Again, we lower bound this sum by

considering only (nL, nR) pairs in the range defined by Equations (70) and (71).

Define the interval

Iβ,N :=

[
1

2

(
1− ϵ0

2

)
N − βN,

1

2

(
1− ϵ0

2

)
N + βN

]
.

Because nL and nR correspond to random time instances where the EPS photon

definitively arrives at the left or right antenna, respectively, we see that

P (nL, nR) =
1

2
PB(N

2 −d, 1− ϵ0
2 )

(nL) · PB(N
2 +d, 1− ϵ0

2 )
(nR)

+
1

2
PB(N

2 +d, 1− ϵ0
2 )

(nL) · PB(N
2 −d, 1− ϵ0

2 )
(nR), (105)

where B(n, p) represents a binomial distribution with n trials and success probability

p (in this case, the probability that no source photon arrives or that both the source
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and EPS photon arrive at the same antenna). The EPS is a superposition of two

configurations: The first term of the sum in Equation (105) represents the

configuration where N
2 − d EPS photons go to the left antenna and N

2 + d go to the

right, and the second term represents the opposite configuration.

If we let FX(k;n, p) denote the cumulative distribution function of a random variable

X ∼ B(n, p), that is,

FX(k;n, p) = P (X ≤ k), X ∼ B(n, p), (106)

then we have∑
nL,nR∈Iβ,N

P (nL, nR)

=
1

2

 ∑
nL∈Iβ,N

PB(N
2
−d, 1− ϵ0

2 )(nL)

 ·

 ∑
nL∈Iβ,N

PB(N
2
+d, 1− ϵ0

2 )(nR)


+

1

2

 ∑
nL∈Iβ,N

PB(N
2
+d, 1− ϵ0

2 )(nL)

 ·

 ∑
nL∈Iβ,N

PB(N
2
−d, 1− ϵ0

2 )(nR)

 (107)

=
1

2

[
1− 2 · FX

((
1− ϵ0

2

)
· N
2

− βN ;
N

2
− d, 1− ϵ0

2

)]
×
[
1− 2 · FX

((
1− ϵ0

2

)
· N
2

− βN ;
N

2
+ d, 1− ϵ0

2

)]
+

1

2

[
1− 2 · FX

((
1− ϵ0

2

)
· N
2

− βN ;
N

2
+ d, 1− ϵ0

2

)]
×
[
1− 2 · FX

((
1− ϵ0

2

)
· N
2

− βN ;
N

2
− d, 1− ϵ0

2

)]
(108)

=

[
1− 2 · FX

((
1− ϵ0

2

)
· N
2

− βN ;
N

2
+ fN, 1− ϵ0

2

)]
×
[
1− 2 · FX

((
1− ϵ0

2

)
· N
2

− βN ;
N

2
− fN, 1− ϵ0

2

)]
. (109)

Hoeffding’s inequality states that

FX(k;n, p) ≤ exp

(
−2n

(
p− k

n

)2
)
, (110)

provided that k < np. We can use this to bound Equation (109) as

∑
nL,nR∈Iβ,N

P (nL, nR) ≥

[
1− 2 · exp

(
−
(
1− ϵ0

2

)
N ·

((
1− ϵ0

2

)
−
(
1− ϵ0

2

)
· 1
2
− β

1
2
+ f

)2 )]

×

[
1− 2 · exp

(
−
(
1− ϵ0

2

)
N

·

((
1− ϵ0

2

)
−
(
1− ϵ0

2

)
· 1
2
− β

1
2
− f

)2 )]
, (111)

which is satisfied if β > f ·
(
1− ϵ0

2

)
. This bound tends to 1 as N grows large. We can

update our asymptotic lower bound from Equation (104) as
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F ⪆ 8f2 ·

√
16ϵ0

π(ϵ20 − 16f2)
·N3/2 · (1− |cos(2fN(ϕ− δ))|), (112)

and we see that the envelope of this bound for a fixed value of f is equal to

Fenv := 8f2 ·

√
16ϵ0

π(ϵ20 − 16f2)
·N3/2, (113)

causing our Cramér-Rao bound on the variance of our estimate of ϕ to scale as 1
N3/2

and our subsequent lower bound on standard deviation to scale as 1
N3/4 thereby

beating the shot noise scaling of 1/
√
N . In Figure 6, we plot the envelope of the Fisher

information from Equation (113) for ϵ0 = 0.05 and several values of f . We see that

even when f is well below ϵ0
4 , the maximum allowable value in our analysis Fenv

quickly transitions from scaling on par with shot noise (∼ N) to the more desirable

scaling of ∼ N3/2.
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Figure 6. The scaling of the Fisher information in our quantum VLBI setup as the parameter f is varied

but kept constant over the number of photons N . As f is raised toward its maximum value of

ϵ0/4 = 0.0125, the Fisher information shifts away from the shot noise scaling of ∼ N toward a better

scaling of ∼ N3/2.

Remark 3: From our previous observation (Remark 2) about the signs of

Z
(nL,nR)
1 (zL, zR) and Z

(nL,nR)
2 (zL, zR), summed terms F ({nL, nR, (zL, zR)}) will tend

to either 1) all have a factor of 1− cos(2fN(ϕ− δ)), 2) all have a factor of

1 + |cos(2fN(ϕ− δ))|, or 3) approximately half will have the first factor and half will

have the second, causing the cosine terms to roughly cancel out in the summation.

The result is that, in any of these cases, the envelope in Equation (113) will grow by a

factor of 2.
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In fact, if we select a constant k and allow the parameter f to vary as a function of N

as

f ≈

√
−πkN +

√
π2k2N2 + 64πϵ30kN

512ϵ0
, (114)

which is less than ϵ0
4 because the square root function is concave and increasing, then

we can see that we can produce an envelope that is approximately

Fenv ≈
√
k

2
N2, (115)

giving us a Cramér-Rao bound of 1
F ∼ 1

N2 and a lower bound on the standard

deviation error scaling as ∼ 1
N , allowing us to achieve Heisenberg-limited scaling.

In Figure 7(a), we plot the value of f that achieves Heisenberg-limited scaling, setting

k = 10−9 in Equation (114) for ϵ0 = 0.05, and see that it stays well below the ϵ0
4 limit

from Equation (93). In Figure 7(b), we plot the corresponding lower bound from

Equation (111) on the probability of the typical set of events Iβ,N considered in our

analysis. We set β equal to the midpoint of
[
ϵ0
4 − f,

(
1− ϵ0

2

)
· f
]
, its allowable range

as determined by Equations (70), (71), and (111). As we can see, the likelihood of

detection signatures falling in Iβ,N quickly approaches 1 with increasing N . In Figure

8(a), we plot the resulting value of the lower bound on the Fisher information given by

Equation (112), and we see how it lies along the envelope described by Equation (113),

which exhibits Heisenberg-limited scaling. The corresponding angular resolution for

estimating ϕ from Equation (4) is shown in Figure 8(b), showing that we quickly

observe improvement in our estimation uncertainty with increasing N when compared

to the original setting of N = 1—the single-photon EPS case from Gottesman et al.

[3]. The figure also depicts the angular resolution improvement over N repeated

applications of the single-photon EPSs, which lies at the shot noise limit.
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Figure 7. (a) The value of the parameter f needed to achieve Heisenberg-limited scaling of the Fisher

information, setting k = 10−9 in Equation (114). We see that f stays well below its maximum

allowable limit of ϵ0/4. (b) The associated probability of the set typical set Iβ,N considered in our

analysis, setting β equal to the midpoint of
[ ϵ0

4
− f,

(
1− ϵ0

2

)
· f

]
, its allowable range.

24



0 2000 4000 6000 8000 10000
Number of Photons, N

0

1

2

3

4

5

Fi
sh

er
 In

fo
rm

at
io

n,
 F

1e7

Original

Fisher Information, 0 = 0.05
Asymptotic Lower Bound on Fisher Information
Envelope of Lower Bound on Fisher Information
Half Squared Number of Photons, N2/2

(a)

0 2000 4000 6000 8000 10000
Number of Photons, N

10 4

10 3

10 2

10 1

100

101

102

103

St
an

da
rd

 D
ev

ia
tio

n 
of

 E
st

im
at

ed
 

Original

Angular Resolution, 0 = 0.05
Asymptotic Cramer-Rao Bound
1/ Fenv

1/ NF1

2/N

(b)

Figure 8. (a) The asymptotic lower bound on Fisher information from Equation (112) obtained by

choosing the parameter f as in Equation (114), setting k = 10−9. We see that its envelope from

Equation (113) approaches Heisenberg-limited scaling of ∼ N2. (b) The corresponding Cramér-Rao

bounds on angular resolution resulting from the asymptotic bound on F and its envelope. The original

single-photon EPS case from Gottesman et al. [3] is annotated in each figure, as well as the angular

resolution achievable from repeating it N times (1/
√
NF1, where F1 is defined in Equation (29)).

VII. Concluding Remarks and Future Directions

While we have demonstrated that the point-source angular resolution of VLBI can be

enhanced by sharing multiphoton quantum states between antennas, there are several

major obstacles to implementing such a system in practice. The quantum states we

have employed are exotic, and lie beyond the realm of what has been implemented to

date. Indeed, even the NOON states we employed in Section III have only been realized

experimentally for up to N = 5 [13]. Furthermore, the VLBI setup of Gottesman et al.

[3] (depicted in Figure 2) requires quantum memory to interface more than two

apertures, and our concept would have much more demanding quantum memory

requirements. Such technology is relatively new, though in active development.

We remark that our arguments have assumed rather capable photon-number

resolution (PNR) for our detectors, particularly in the case of all source and EPS

photons arriving in a single time bin. In the case where our source is weak, with at

most a single photon arriving within a time bin, this becomes less of an issue, though

one may still ask how our results would be affected by non-ideal PNR measurements.

This would require us to recompute our approximations for the Fisher information

assuming modeled imperfect measurement outcomes with a modeled probability

distribution, which we leave for future work. Likewise, we could also seek to compute

the effect of extra received photons due to noise. In some sense, the EPSs we designed

in Equation (31) resemble error-correcting codes, where we have considered errors to

be events in which the location of an EPS photon is determined. By the same token, if

we include error events where multiple non-EPS photons arrive in a single time bin

(say from both a source and from noise), our system should be somewhat robust. More
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interesting would be accounting for cases where only a noise photon arrives and may

be potentially confused for a source photon. We again leave this analysis for the future.
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